ST2195 Programming For Data Science Report: The Markov Chain Monte Carlo algorithm, in particular the Metropolis-Hastings algorithm
Part 1 In this part, you are asked to work with the Markov Chain Monte Carlo algorithm, in particular the Metropolis-Hastings algorithm. The aim is to simulate random numbers for the distribution with the probability density function given below
where x takes values in the real line and |x| denotes the absolute value of x. More specifically, you are asked to generate x0, x1, . . . , xN values and store them using the following version of the Metropolis-Hastings algorithm (also known as random walk Metropolis) that consists of the steps below:
Stuck with a lot of homework assignments and feeling stressed ? Take professional academic assistance & Get 100% Plagiarism free papers
Random walk Metropolis
Step 1 Set up an initial value x0 as well as a positive integer N and a positive real number s.
Step 2 Repeat the following procedure for i = 1, . . . , N :
• Simulate a random number x∗ from the Normal distribution with mean xi−1 and standard deviation s.
• Compute the ratio

• Generate a random number u from the uniform distribution between 0 and 1.
• If u < r (x∗, xi−1), set xi = x∗, else set xi = xi−1.
(a) Apply the random walk Metropolis algorithm using N = 10000 and s = 1. Use the generated samples (x1, . . . xN ) to construct a histogram and a kernel density plot in the same figure. Note that these provide estimates of f (x). Overlay a graph of f (x) on this figure to visualize the quality of these estimates. Also, report the sample mean and standard deviation of the generated samples (Note: these are also known as the Monte Carlo estimates of the mean and standard deviation respectively).
Practical tip: To avoid numerical errors, it is better to use the equivalent criterion log u < log r (x∗, xi−1) = log f (x∗) − log f (xi−1) instead of u < r (x∗, xi−1).
Buy Custom Answer of This Assessment & Raise Your Grades
Are you a Singapore University of Social Science (SUSS) student grappling with the ST2195 Coursework Project? Ease your academic journey with our expert Assignment Helper and specialized Case Study Writing Help. Pay for assistance and conquer the complexities of the Markov Chain Monte Carlo algorithm effortlessly.
- Seller Return Rate Prediction and Production Planning Optimization
- The Impact of AI and Machine Learning on Data Privacy in the Era of Big Data Essay : Com302 Web Analytics Murdoch Singapore
- Biomedical Device Innovation Need Statement Assignment
- BPM213 TMA01 January 2025 Presentation
- FCS A2 -Fundamentals of Computer Systems Individual Assignment PdF (KHEA) Singapore
- A2359C AY2024 Term 4 – Project Assignment
- BUS356 TMA Jan 2025 Semester-Negotiation Strategies and Approaches: A Case Study, Singapore
- BUS363 TMA01:Enhancing Operations and Service Quality in Ride-Hail Services| January 2025 Semester, Singapore
- HFS105 TMA01: Secularization Trends and Religious Resilience in Contemporary Society| January 2025, Singapore
- HFS105 TMA01:Critique of Sociotechnical Systems Contexts in Accident Analysis, Jan 2025 Singapore
UP TO 15 % DISCOUNT